Acta Geodaetica et Cartographica Sinica ›› 2024, Vol. 53 ›› Issue (11): 2075-2085.doi: 10.11947/j. AGCS.2024.20230582.
• Cartography and Geoinformation • Previous Articles
Huafei YU1,2(), Tianqi QIU3, Zhe ZHOU1,2, Chongya GONG1,2, Tianyuan XIAO1,2, Min YANG1,2, Tinghua AI1,2()
Received:
2023-12-20
Published:
2024-12-13
Contact:
Tinghua AI
E-mail:huafeiyu@whu.edu.cn;tinghuaai@whu.edu.cn
About author:
YU Huafei (1993—), male, postdoctor, majors in intelligent processing of map data. E-mail: huafeiyu@whu.edu.cn
Supported by:
CLC Number:
Huafei YU, Tianqi QIU, Zhe ZHOU, Chongya GONG, Tianyuan XIAO, Min YANG, Tinghua AI. Drainage pattern recognition supported by graph Transformer[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(11): 2075-2085.
Tab.2
Pattern prediction for different drainage cases by three methods"
编号 | 案例 | 方法 | 模式概率 | ||||
---|---|---|---|---|---|---|---|
树枝状 | 扇状 | 平行状 | 骨架状 | 矩形状 | |||
(a) | 1st-Cheb Net | 0.288 7 | 0.041 6 | 0.007 6 | 0.592 2 | 0.069 9 | |
GraphSAGE | 0.297 9 | 0.602 7 | 0.016 9 | 0.077 6 | 0.004 9 | ||
图Transformer | 0.720 6 | 0.000 5 | 0.000 0 | 0.278 8 | 0.000 1 | ||
(b) | 1st-Cheb Net | 0.000 9 | 0.170 5 | 0.828 5 | 0.000 1 | 0.000 0 | |
GraphSAGE | 0.112 9 | 0.862 9 | 0.024 0 | 0.000 2 | 0.000 0 | ||
图Transformer | 0.001 2 | 0.927 1 | 0.071 6 | 0.000 1 | 0.000 0 | ||
(c) | 1st-Cheb Net | 0.065 5 | 0.797 6 | 0.136 8 | 0.000 1 | 0.000 0 | |
GraphSAGE | 0.004 7 | 0.539 6 | 0.455 6 | 0.000 0 | 0.000 0 | ||
图Transformer | 0.006 7 | 0.170 9 | 0.800 8 | 0.003 8 | 0.017 8 | ||
(d) | 1st-Cheb Net | 0.001 4 | 0.095 5 | 0.851 3 | 0.051 6 | 0.000 1 | |
GraphSAGE | 0.007 6 | 0.002 9 | 0.022 4 | 0.961 1 | 0.005 9 | ||
图Transformer | 0.000 9 | 0.000 0 | 0.000 3 | 0.965 2 | 0.033 6 | ||
(e) | 1st-Cheb Net | 0.749 2 | 0.216 5 | 0.003 9 | 0.003 4 | 0.027 0 | |
GraphSAGE | 0.004 2 | 0.000 0 | 0.000 3 | 0.795 9 | 0.199 6 | ||
图Transformer | 0.234 5 | 0.000 1 | 0.013 1 | 0.007 4 | 0.744 8 |
[1] | ZERNITZ E R. Drainage patterns and their significance[J]. The Journal of Geology, 1932, 40(6): 498-521. |
[2] | 李敏慧, 吴保生, 陈毅. 黄河源区典型河网平面形态特征及影响因素[J]. 地理学报, 2022, 77(11): 2878-2889. |
LI Minhui, WU Baosheng, CHEN Yi. Planform geometry and controlling factors of river networks in the Yellow River source zone[J]. Acta Geographica Sinica, 2022, 77(11): 2878-2889. | |
[3] | SULAIMAN M S, UDIN W S, KHAN M A, et al. Analysis of drainage pattern and its relationship with gold potential in Batu Melintang, Jeli, Kelantan[C]//Proceedings of the 3rd International Conference on Tropical Resources and Sustainable Sciences. Kelantan: IOP Publishing Ltd, 2021. |
[4] | ZHANG Ling, GUILBERT E. Evaluation of river network generalization methods for preserving the drainage pattern[J]. ISPRS International Journal of Geo-Information, 2016, 5(12): 230. |
[5] | JUNG K, SHIN J Y, PARK D. A new approach for river network classification based on the beta distribution of tributary junction angles[J]. Journal of Hydrology, 2019, 572: 66-74. |
[6] | ZHANG Ling, GUILBERT E. Automatic drainage pattern recognition in river networks[J]. International Journal of Geographical Information Science, 2013, 27(12): 2319-2342. |
[7] | PEREIRA-CLAREN A, GIRONÁS J, NIEMANN J D, et al. Planform geometry and relief characterization of drainage networks in high-relief environments: an analysis of Chilean Andean basins[J]. Geomorphology, 2019, 341: 46-64. |
[8] | BURR D M, DRUMMOND S A, CARTWRIGHT R, et al. Morphology of fluvial networks on Titan: evidence for structural control[J]. Icarus, 2013, 226(1): 742-759. |
[9] | ICHOKU C, CHOROWICZ J. A numerical approach to the analysis and classification of channel network patterns[J]. Water Resources Research, 1994, 30(2): 161-174. |
[10] | LU Yao, YANG Kang, LU Xin, et al. Diverse supraglacial drainage patterns on the Devon ICe Cap, Arctic Canada[J]. Journal of Maps, 2020, 16(2): 834-846. |
[11] | MEJÍA A I, NIEMANN J D. Identification and characterization of dendritic, parallel, pinnate, rectangular, and trellis networks based on deviations from planform self-similarity[J]. Journal of Geophysical Research (Earth Surface), 2008, 113(F2): F02015. |
[12] | ROCHE M, HELLE M, SAXÉN H. Principal component analysis of blast furnace drainage patterns[J]. Processes, 2019, 7(8): 519. |
[13] | YU Huafei, AI Tinghua, YANG Min, et al. A recognition method for drainage patterns using a graph convolutional network[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 107: 102696. |
[14] | YU Huafei, AI Tinghua, YANG Min, et al. Automatic segmentation of parallel drainage patterns supported by a graph convolution neural network[J]. Expert Systems with Applications, 2023, 211: 118639. |
[15] | DONADIO C, BRESCIA M, RICCARDO A, et al. A novel approach to the classification of terrestrial drainage networks based on deep learning and preliminary results on solar system bodies[J]. Scientific Reports, 2021, 11: 5875. |
[16] | LIU Chengyi, ZHAI Renjian, QIAN Haizhong, et al. Identification of drainage patterns using a graph convolutional neural network[J]. Transactions in GIS, 2023, 27(3): 752-776. |
[17] | WANG Wenning, YAN Haowen, LU Xiaomin, et al. Drainage pattern recognition method considering local basin shape based on graph neural network[J]. International Journal of Digital Earth, 2023, 16(1): 593-619. |
[18] | KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL]. [2023-12-01]. https://arxiv.org/abs/1609.02907v3. |
[19] | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6000-6010. |
[20] | HU Yingjie, MAI Gengchen, CUNDY C, et al. Geo-knowledge-guided GPT models improve the extraction of location descriptions from disaster-related social media messages[J]. International Journal of Geographical Information Science, 2023, 37(11): 2289-2318. |
[21] | 陈晓玲, 唐丽玉, 胡颖, 等. 基于ALBERT模型的园林植物知识实体与关系抽取方法[J]. 地球信息科学学报, 2021, 23(7): 1208-1220. |
CHEN Xiaoling, TANG Liyu, HU Ying, et al. Extracting entity and relation of landscape plant's knowledge based on ALBERT model[J]. Journal of Geo-information Science, 2021, 23(7): 1208-1220. | |
[22] |
吴晨昊, 向隆刚, 张叶廷, 等. 基于地理空间感知型表征学习的轨迹相似度计算[J]. 测绘学报, 2023, 52(4): 670-678. DOI:.
doi: 10.11947/j.AGCS.2023.20220026 |
WU Chenhao, XIANG Longgang, ZHANG Yeting, et al. Geography-aware representation learning for trajectory similarity computation[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(4): 670-678. DOI:.
doi: 10.11947/j.AGCS.2023.20220026 |
|
[23] | 张金雷, 陈奕洁, Panchamy Krishnakumari, 等. 基于注意力机制的城市轨道交通网络级多步短时客流时空综合预测模型[J]. 地球信息科学学报, 2023, 25(4): 698-713. |
ZHANG Jinlei, CHEN Yijie, PANCHAMY K, et al. Attention-based multi-step short-term passenger flow spatial-temporal integrated prediction model in URT systems[J]. Journal of Geo-information Science, 2023, 25(4): 698-713. | |
[24] |
廖钊宏, 张依晨, 杨飚, 等. 基于Swin Transformer-CNN的单目遥感影像高程估计方法及其在公路建设场景中的应用[J]. 测绘学报, 2024, 53(2): 344-352. DOI:.
doi: 10.11947/j.AGCS.2024.20220607 |
LIAO Zhaohong, ZHANG Yichen, YANG Biao, et al. Monocular height estimation method of remote sensing image based on Swin Transformer-CNN and its application in highway road construction sites[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(2): 344-352. DOI:.
doi: 10.11947/j.AGCS.2024.20220607 |
|
[25] |
林云浩, 王艳军, 李少春, 等. 一种耦合DeepLab与Transformer的农作物种植类型遥感精细分类方法[J]. 测绘学报, 2024, 53(2): 353-366. DOI:.
doi: 10.11947/j.AGCS.2024.20220692 |
LIN Yunhao, WANG Yanjun, LI Shaochun, et al. A coupled DeepLab and Transformer approach for fine classification of crop cultivation types in remote sensing[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(2): 353-366. DOI:.
doi: 10.11947/j.AGCS.2024.20220692 |
|
[26] | STRAHLER A N. Quantitative analysis of watershed geomorphology[J]. Eos, Transactions American Geophysical Union, 1957, 38(6): 913-920. |
[27] | DUCHÊNE C, BARD S, BARILLOT X, et al. Quantitative and qualitative description of building orientation[EB/OL]. [2023-12-01]. https://www.researchgate.net/publication/228982283_Quantitative_and_qualitative_description_of_building_orientation. |
[28] | HAMILTON W L, YING R, LESKOVEC J, et al. Inductive representation learning on large graphs[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 1025-1035. |
[29] | KONG Bo, AI Tinghua, ZOU Xinyan, et al. A graph-based neural network approach to integrate multi-source data for urban building function classification[J]. Computers, Environment and Urban Systems, 2024, 110: 102094. |
[1] | Zhiwei XIE, Shuaizhi ZHAI, Fengyuan ZHANG, Min CHEN, Lishuang SUN. Object-oriented high-resolution image classification using inductive graph neural networks [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(8): 1610-1623. |
[2] | ZHANG Yichao, ZHENG Xiangtao, LU Xiaoqiang. Hyperspectral image classification method based on hierarchical transformer network [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(7): 1139-1147. |
[3] | WU Chenhao, XIANG Longgang, ZHANG Yeting, WU Huayi. Geography-aware representation learning for trajectory similarity computation [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(4): 670-678. |
[4] | WANG Wei, DENG Jiwei, WANG Xin, LI Zhiyong, YUAN Ping. GLFFNet model for remote sensing image scene classification [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(10): 1693-1702. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||